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Abstract. We presentthe designand implementationof an infrastructurethat
enablesmonitoring of resources,services,and applicationsin a computational
grid andprovidesa toolkit to help managetheseentitieswhenfaultsoccur. This
infrastructurebuilds on threebasicmonitoring components:sensorsto perform
measurements,actuatorsto performactions,andaneventserviceto communicate
eventsbetweenremoteprocesses.We describehow we applyour infrastructureto
support a grid service and an application: (1) the Globus Metacomputing
Directory Service;and (2) a long-runningand coarse-grainedparameterstudy
application.We usetheseapplicationto show thatour monitoringinfrastructureis
highly modular, conveniently retargettable, and extensible.

1 Intr oduction

A typical computationalgrid is characterizedby distributed resources, services, and
applications. Computationalgrids consist of large sets of diverse,geographically
distributed resourcesthat are groupedinto virtual computersfor executingspecific
applications.The diversity of theseresourceand their large numberof usersrender
them vulnerableto faults and excessive loads.Suitablemechanismsare neededto
monitor resourceusagefor detecting conditions that may lead to failures. Grid
resourcesare typically controlled by multiple, physically separatedentities that
constitute value-addedservices.Grid servicesare often expected to meet some
minimum levels of quality of service (QoS) for desirableoperation.Appropriate
mechanismsareneededfor monitoringandregulatingsystemresourceusageto meet
QoSrequirements.Thecomplexity of grid applications,which arebuilt on distributed
resourcesandservices,stemsfrom their typically largesizeandinherentlydistributed
structure. This complexity contributes to a possibility of encounteringfailures.
Therefore,grid applicationsalso require mechanismsto detect and recover from
failures.

The National Aeronautics and Space Administration (NASA) is building a
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computationalgrid, called the Information Power Grid (IPG). Currently, the IPG
consistsof resourcesat NASA’s Ames,Glenn,andLangley researchcentersandwill
grow to containresourcesfrom many NASA centers.As part of this effort, we are
developinganinfrastructureto monitorresources,services,andapplicationsthatmake
up the IPG andto detectexcessive resourceusagepatterns,faults,or deviationsfrom
requiredQoS levels. This grid monitoring infrastructureis also capableof invoking
recovery mechanismsfor possiblefault managementor QoSregulation.In this paper,
we presentthe designof this infrastructureanddescribeits implementationfor fault
detection and management of a grid service and an IPG application.

We require a framework for monitoring and fault managementthat is scalable,
extensible,modular, secure,andeasyto use.Our infrastructuremustscaleto thelarge
numberof entitiesto bemonitoredandmanagedin theIPG.Our framework mustalso
be extensiblebecauseentitiesto be monitored,failure modes,andmethodsfor fault
recovery or QoSregulationarelikely to changeover time.As a meansto severalends,
werequirethatourgrid monitoringinfrastructureis modularto allow new components
to be addedandexisting componentsto be modifiedwithout changingthe restof the
code.Modularity helpslower the softwarecomplexity by allowing a userto include
only thosecomponentsthatthey wish to use.Wealsorequiresupportfor severallevels
of securitybuilt atop the basicIPG securityinfrastructure:none,authenticationand
authorization,andfinally authentication,authorization,andencryptedcommunication.

We examineda numberof existing monitoring systemsand found that they did not
fulfill the above requirements.A majority of existing monitoring systems,such as
NetLogger[15], Paradyn[12], AIMS [17], Gloperf [10], andSPI [1] cancollect data
from distributed systemsfor analyzingthem through their specific tools. However,
thesemonitoringsystemscannotserve asdatacollectioncomponentsfor other tools
and applications that may wish to use this information. Some of the existing
monitoring systemsdo support external tools or applicationsfor fault detection,
resourcescheduling,and QoS management.The Heart Beat Monitor (HBM) is an
extensionof Globusthatperiodicallysends“heartbeats”to a centralizedcollectorand
provides a fault detectionservicein a distributed system[14]. While heartbeatsare
often usedfor periodicallydeterminingthe statusof a remotenode,relying only on
one type of “sensor” (i.e., heartbeatsgeneratedby local monitors) contributes to
inaccuraciesin fault detection. The Network Weather Service (NWS) measures
availablenetwork bandwidthandsystemloadto predicttheir futurestates.Futurestate
predictionscanbe usedby a schedulerto reserve andallocatetheseresourcesin an
efficient manner[16]. If we considera stateestimatorasa specialtype of sensor, we
could useits future statepredictionsfor the benefitof several real-timeapplications
thatoftenrely on dynamicschedulingof resources.Dindaet al. compareandevaluate
several time-seriesmodelingtechniquesto predictfuture systemloads,which canbe
appliedto dynamicresourcemanagement[5]. The DynamicSoft Real-Time (DSRT)
schedulingtool relies on a customizedCPU monitor to implementvariousspecific
scheduling policies of this tool [4]. JEWEL/DIRECT is an example where a
monitoringsystemcanbe usedasa part of a feedbackloop in control systems[7,9].
However, the complexity of this monitoring systemmakes it a challengeto use.
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RMON monitorsthe resourceusagefor distributedmultimediasystemsrunningRT-
Mach [11]. Information collectedby the monitoring systemis specificallyusedfor
adaptively managingthesystemresourcesthroughreal-timefeaturesof theoperating
system.Autopilot integratesdynamic performanceinstrumentationand on-the-fly
performancedata reduction with configurableresourcemanagementand adaptive
control algorithms[13]. However, in this casedatacollection is specificallygeared
toward providing adaptive control and it is not obvious if underlyingdatagathering
services can be used for other applications. Java Agents for Monitoring and
Management(JAMM [3]) is anothereffort in thesamedirection,which addressesthe
needsof only Java basedapplications.SNMPbasedtoolsarewidely usedfor network
monitoringandmanagement.Similarly, monitoring,fault notification,andweb-based
systemandnetwork administrationtools, suchasBig Brother [2] arealsouseful for
distributed systems.However, thesetools cannotprovide application-specificevent
notification, which is supported in our monitoring and management infrastructure.

Our infrastructureis built on threebasicmodules:sensors, actuators, anda grid event
service. Sensorsareusedto measurepropertiesfrom a local system.Sincethereare
many propertiesthat could be measured,our monitoring infrastructuredefinesa
commonapplicationprogramminginterface(API) for sensors.In this way, we can
implementsomesetof sensorsfor measuringbasicpropertiesandotheruserscanadd
sensorsfor otherpropertiesthat they wish to monitor. Actuatorsperformactionsfrom
a local system.Similar to sensors,therearemany differentactuatorsthat all sharea
commonAPI. Thegrid eventserviceprovidescommunicationof monitoringandfault
managementeventsfrom producersto consumers.Atop thesebasicmodules,higher-
level modules can be constructed.For example, we describea sensor manager
componentthat facilitates the building of customizedmonitoring systems.Our
monitoringinfrastructureis describedin Section2. Section3 describesa serviceand
an applicationthat we are supportingwith our infrastructure.We concludewith a
discussion of future directions of this effort in Section 4.

2 Monitoring Infrastructur e

Our grid monitoring infrastructure includes three basic components:sensors,
actuators,andaneventservice.Figure1 depictsa typical monitoringscenariobuilt on
thesebasiccomponents.Thesecomponentsaretypically locatedonmultiplehoststhat
interactwith one anotherthroughthe event serviceas shown in the figure. Further
description of three basic components follows.

Sensors:A sensorcan measurethe characteristicsof a target systemresource.A
sensortypically executesoneof Unix utilities, suchasdf, ps, ping, vmstat, or netstat,
and extracts sensor-specific measurements.Thesemeasurementsare representedas
valuesof sensor-specific attributes. In addition to theseexternal sensors, we also
provide internal sensors that cancollect resourceusageinformationfrom within the
calling process.

Actuators: An actuatoris invoked in a similar fashionto a sensorexceptthat it uses
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theshellto performspecificconfiguration,processcontrol,or otheruser-definedtasks.
Someof the actuatorsthat we are implementinginclude: kill process,sendmail,
execute a shell command, lightweight directory access protocol (LDAP) server
queries, and some Globus commands.

Event Service: This facility provides a mechanismfor forwarding sensor-collected
information to other processesthat are interestedin that information.Event service
supportsa publisher-subscriberparadigmfor a client to requestspecificinformation
anda server to forward that information.Event servicealsofacilitatesforwardingof
application-specific event data from a user process to a consumer process.

Thesebasic monitoring servicescan be invoked through APIs. CommonAPIs to
sensorsand actuatorsallow us to implement new sensorsor actuatorswithout
changingthecodethatusesthem.We alsoimplementtheAPIs asstand-aloneutilities
so that they can be invoked on the command-line.We have implementedthese
componentson threeplatforms:Irix, Solaris,andLinux. We representthe monitored
data using eXtensible Markup Language (XML).

A number of higher level componentscan be built using the basic monitoring
components.We have implementeda local sensor manager that can executeuser-
specifiedsensorsand forward event data. We have also developeda genericdata
collector componentfor gathering the information forwardedby local monitoring
servers.We arein theprocessof developingdata archives andquery servers to extend
monitoring and managementinfrastructureto supporttools and applicationsthat do
not usepublisher-subscriberparadigm.Figure2 presentsanoverview of thesoftware
architectureof monitoring and fault managementinfrastructure.Prototypesfor the
threebasiccomponentsarebuilt on Globus middlewareservicesfor communication
and security. Higher level componentsare basedon the three basic components.
Distributedapplications,managementtools,andmonitoringtools caneitherusehigh
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level componentsor directly accessbasic componentsfor a greater degree of
customizability.

3 Applications of the Infrastructur e

We are currently applying our infrastructure to one grid service and one grid
applicationto provide fault handlingand applicationstatustracking.The following
subsections present an overview of these uses of our infrastructure.

3.1  Fault Management for Metacomputing Directory Service

The metacomputing directory service (MDS) is the LDAP-basedgrid information
serviceof the Globus toolkit [6]. In a Globus basedcomputationalgrid, the MDS
maintainsdynamic information about resources,services,and applications.Many
servicesand applicationsutilize this information and it is thus critical that this
informationbeavailable.An MDS server maybecomeinaccessiblefor queriesdueto
several reasonsincluding: (1) large log files resulting in high disk usageand I/O
failures;(2) excessiveCPUload;(3) excessivenumberof clientstrying to queryMDS;
(4) network failures; and (4) LDAP server failures. In order to provide a reliable
directory servicein a productiongrid environment,we needto detect,report, and
manage these MDS faults.

Figure 3 describesthe architectureof an MDS fault managerbasedon our grid
monitoringandmanagementcomponents.Eachhost runninga LDAP server for the
MDS containsa monitor and a fault manager. The monitor periodically invokes
sensorsto collect information on disk usage,CPU usage,number of active TCP
connectionsto the MDS host, and the statusof the LDAP server process.This
information is received by the local fault managerwhich checksthis information
againstpredefinedfault conditions.If a fault conditionoccurs,the fault manageruses

Operating system services

Globus middleware services

Monitoring and management infrastructure
(sensors, actuators, event service)

Higher level monitoring and management components
(sensor managers, data collectors, etc.)

Monitoring, fault management, and
QoS regulation applications

Fig. 2.Software architecture of monitoring and management infrastructure for
computational grids.
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actuatorsto take thespecifiedactions.For example,if theLDAP log files exceedtheir
allocateddisk space,older log files aremoved to tapeor if the LDAP server process
disappears,theLDAP server is restarted.Thefault manageris a separateprocessfrom
themonitor for securityreasons:thefault managerrequiresroot privilegesto startthe
LDAP server and thereforethe fault managershould be as simple as possiblefor
verification.

Muchof themonitoringandfaultmanagementin thisexampletakesplaceon thelocal
machine,but a remotemonitorandfault manageris usedto monitor thehoststhatare
running the LDAP servers. The local monitor on the LDAP server host is sending
periodicheartbeatmessagesto theMDS fault manageron a remotehost.If theMDS
fault managerstopsreceiving heartbeatsfrom a local monitor, it will seeif the host
runningthe local monitor canbecontacted.If thehostis not accessibleanddoesnot
become accessiblewithin a specified period, an email is sent to the MDS
administrators so that they can correct this problem.

Figure4 depictsthetemporalanalysisof tracedataobtainedfrom a four daylong test
of MDS faultmanager. Clearly, theinter-arrival timesof amajorityof heartbeatsensor
messagesat theMDS fault managerarecloseto their actualsamplingperiodof 10 sec
with only a few exceptionsthatexceedtimeoutvalueof 12sec.Usingthis consistency
in inter-arrival times,someof theexisting fault managementfacilitiesrely on periodic
heartbeatsanduse“unusual” delayin the arrival of thesemessagesto establishfault
occurrence[14]. For this test, using a heartbeatbasedapproachalone would have
erroneouslydetectedthis latearrival asa failure.TheMDS fault managerusesa ping
sensorto confirm if the MDS host is actually unreachableand distinguisha failure
from late-arriving heartbeat.In the caseshown in Figure 4(a), it was simply a late-
arriving heartbeat.Figure4(b) shows thattheavailabledisk spaceremainedbelow the
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minimum valueof 100 MBytes during this experiment;so no faultsoccurred.Figure
4(c) shows thatmostof the time, thenumberof TCPconnectionsremainedbelow an
arbitrarily selected limit of 40.

3.2  Monitoring and Fault Management of a Parameter Study Application

Parameterstudiesareoftenconsideredsuitableapplicationsfor distributedcomputing
platformsdueto their coarse-grainparallelism.For this parameterstudyapplication,
sensorsmonitor processesstate, free disk space, file staging, host status, and
applicationexecutionprogress.Monitoring is neededto detectfaults relatedto host
accessibility, disk space availability, and application process status during an
execution.In this subsection,we describehow to useour infrastructureto perform
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monitoring and fault management for a parameter study application.

Figure 5 depictsthe architectureof a monitoring and fault notification systemfor a
parameterstudyapplication.The front endof the parameterstudyapplication,called
ILab, distributes the individual processeson multiple parallel systems in a
computationalgrid. A shell script on the front-end host of each parallel system
determines the process IDs for relevant processesand uses a command-line
implementationof process status sensor, which periodically sendsthe processstate
informationfrom front-endhostto the ILab host.A disk space sensoris alsoinvoked
to monitorthediskusage.Thisprocessanddiskusageinformationis usedby theILab
front-endto determineif a processhasterminatedor excessive disk spacehasbeen
used.In caseof processtermination,ILab usesaseparatescriptto examinetheprocess
output file to determineif it was terminatednormally or abnormally. In caseof an
abnormaltermination,ILab cantry to further analyzethe causeof this conditionand
may alter the future courseof job submissions.Similarly, if the disk usageon a
particularfile systemexceedsa specifiedvalue,subsequentlylaunchedprocessesare
configuredto write their outputto a differentfile system.Thususingmonitoringand
fault detectionthroughgrid monitoringcomponents,selectedfault conditionscanbe
automatically managed.

We tracked the disk spaceusageandstatusof a particularapplicationprocessduring
oneexperimentwith the parameterstudyapplication.Figure6 presentsplots of this
information over the applicationexecution time. Using this information, the ILab
front-enddetectstheconditionwhenaparticularprocessterminatesandit canproceed
with its test to decided whether or not it terminated normally.
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Parameter study host
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Sensors

shell script
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a cluster of workstations

activated by a cron job

Fig. 5.Architecture of a monitoring and fault reporting facility for a parameter
study application.
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In addition to monitoring systemlevel resourceusage,our monitoring and fault
managementinfrastructure can dynamically monitor application-specificevents
occurringin distributedprocesses.This is accomplishedthroughinternalsensorsand
the event service API. Distributed application processesare instrumented by
embeddinginternal sensorsin the code to publish desired information, which is
collectedby a client. Client processsubscribesto the publisherto asynchronously
receive the desiredevent data.This is essentiallya traditionalapplicationmonitoring
scenario,which is implementedusinga publisher-subscriberparadigm.This type of
information can be usedfor performancemonitoring or to allow client to steerthe
application.
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4 Discussion

In this extended abstract,we outlined a grid monitoring and fault management
infrastructure to provide modular, retargettable, and extensible data collection
componentsto enablehigher level fault handling and managementservicesin a
computationalgrid. In addition to performing the traditional task of a monitoring
systemto gathersystem-andapplication-specificinformation,this infrastructurecan
be employed in high level data consumersthat use monitored information for
accomplishingfault management,decisionmaking,or applicationsteeringtasks.We
presentedtwo applicationsof this monitoring infrastructureto provide suchservices
for specific distributed applications.

Currently, our infrastructure uses a publisher-subscriber paradigm for event
notification.We plan to enhanceit to otherdataforwardingmodels,suchasquerying
archives of monitored information. We will also use rule-basedfault detection
mechanismsthat arebasedon predictionof future systemstatesthroughappropriate
time-seriesmodels. Fault detection and managementmechanismsare based on
characterizationand understandingof conditionsthat lead to failures.We are using
applicationandsystemlevel monitoringto characterizefault occurrencesandto glean
better understanding of conditions that lead to faults.
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